When we use programming for problem-solving purposes, data must be stored in certain forms, or Data Structures, so that operations on that data will yield a specific type of output. Imagine, for example, that a non-profit is having trouble staying afloat and needs an increase in donation. It decides it wants to keep track of its donors in a program in order to figure out who is contributing and why. You would first need to define the properties that would define those donors: name, address, amount donated, date of donation, and so on. Then, when the non-profit wants to determine how to best reach out to their donors, it can create a model of the average donor that contributes to the non-profit—say, for example, based on size of gift and location—so that it can better determine who is most receptive to its mission. In this case, size of gift and location are the "data” of the donor model. If the non-profit were to use this model, it would be identifying real donors by first generating an abstract donor. This is an example of using Abstract Data Types. Abstract Data Types both take into account the Data Structure (i.e. the way in which data about donors is stored) and provide the necessary operations on that structure. In this course, we will discuss the theoretical and practical aspects of algorithms and Data Structures. We will also learn to implement Data Structures and algorithms in C/C++, analyze those algorithms, and consider both their worst-case complexity and practical efficiency.
Learn new skills, earn credit toward a degree, or advance your career at your own pace. Build your bridge to better anywhere, at any time, with free courses at Saylor Academy.