Machine Learning: Classification

Full Details
Level
Price
Common Core
Images
No items found.

Case Studies: Analyzing Sentiment & Loan Default Prediction In our case study on analyzing sentiment, you will create models that predict a class (positive/negative sentiment) from input features (text of the reviews, user profile information,…). In our second case study for this course, loan default prediction, you will tackle financial data, and predict when a loan is likely to be risky or safe for the bank. These tasks are an examples of classification, one of the most widely used areas of machine learning, with a broad array of applications, including ad targeting, spam detection, medical diagnosis and image classification. In this course, you will create classifiers that provide state-of-the-art performance on a variety of tasks. You will become familiar with the most successful techniques, which are most widely used in practice, including logistic regression, decision trees and boosting. In addition, you will be able to design and implement the underlying algorithms that can learn these models at scale, using stochastic gradient ascent. You will implement these technique on real-world, large-scale machine learning tasks. You will also address significant tasks you will face in real-world applications of ML, including handling missing data and measuring precision and recall to evaluate a classifier. This course is hands-on, action-packed, and full of visualizations and illustrations of how these techniques will behave on real data. We’ve also included optional content in every module, covering advanced topics for those who want to go even deeper! Learning Objectives: By the end of this course, you will be able to: -Describe the input and output of a classification model. -Tackle both binary and multiclass classification problems. -Implement a logistic regression model for large-scale classification. -Create a non-linear model using decision trees. -Improve the performance of any model using boosting. -Scale your methods with stochastic gradient ascent. -Describe the underlying decision boundaries. -Build a classification model to predict sentiment in a product review dataset. -Analyze financial data to predict loan defaults. -Use techniques for handling missing data. -Evaluate your models using precision-recall metrics. -Implement these techniques in Python (or in the language of your choice, though Python is highly recommended).

Full Details
Formats: 
Part of resource: 
Posted 
Mar 2023
This resource has religious influence.

Similar resources

About University of Washington

The UW is one of the world’s preeminent public universities. Our impact on individuals, our region and the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked No. 7 in the world on the U.S. News & World Report’s Best Global Universities rankings, the UW educates more than 54,000 students annually. We turn ideas into impact and transform lives and our world. For more about our impact, visit our news site, UW News.

So what defines our students, faculty and community members? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

More by University of Washington

thumbnail
Refraction
Refraction
2nd - 6th
thumbnail
Practical Predictive Analytics: Models and Methods
Practical Predictive Analytics: Models and Methods
College
thumbnail
Business English: Planning & Negotiating
Business English: Planning & Negotiating
High School - College
thumbnail
Machine Learning Foundations: A Case Study Approach
Machine Learning Foundations: A Case Study Approach
College
thumbnail
Machine Learning: Recommender Systems & Dimensionality Reduction
Machine Learning: Recommender Systems & Dimensionality Reduction
College
thumbnail
Machine Learning Capstone: An Intelligent Application with Deep Learning
Machine Learning Capstone: An Intelligent Application with Deep Learning
College