Process mining is the missing link between model-based process analysis and data-oriented analysis techniques. Through concrete data sets and easy to use software the course provides data science knowledge that can be applied directly to analyze and improve processes in a variety of domains. Data science is the profession of the future, because organizations that are unable to use (big) data in a smart way will not survive. It is not sufficient to focus on data storage and data analysis. The data scientist also needs to relate data to process analysis. Process mining bridges the gap between traditional model-based process analysis (e.g., simulation and other business process management techniques) and data-centric analysis techniques such as machine learning and data mining. Process mining seeks the confrontation between event data (i.e., observed behavior) and process models (hand-made or discovered automatically). This technology has become available only recently, but it can be applied to any type of operational processes (organizations and systems). Example applications include: analyzing treatment processes in hospitals, improving customer service processes in a multinational, understanding the browsing behavior of customers using booking site, analyzing failures of a baggage handling system, and improving the user interface of an X-ray machine. All of these applications have in common that dynamic behavior needs to be related to process models. Hence, we refer to this as “data science in action”. The course explains the key analysis techniques in process mining. Participants will learn various process discovery algorithms. These can be used to automatically learn process models from raw event data. Various other process analysis techniques that use event data will be presented. Moreover, the course will provide easy-to-use software, real-life data sets, and practical skills to directly apply the theory in a variety of application domains. This course starts with an overview of approaches and technologies that use event data to support decision making and business process (re)design. Then the course focuses on process mining as a bridge between data mining and business process modeling. The course is at an introductory level with various practical assignments. The course covers the three main types of process mining. The first type of process mining is discovery. A discovery technique takes an event log and produces a process model without using any a-priori information. An example is the Alpha-algorithm that takes an event log and produces a process model (a Petri net) explaining the behavior recorded in the log. The second type of process mining is conformance. Here, an existing process model is compared with an event log of the same process. Conformance checking can be used to check if reality, as recorded in the log, conforms to the model and vice versa. The third type of process mining is enhancement. Here, the idea is to extend or improve an existing process model using information about the actual process recorded in some event log. Whereas conformance checking measures the alignment between model and reality, this third type of process mining aims at changing or extending the a-priori model. An example is the extension of a process model with performance information, e.g., showing bottlenecks. Process mining techniques can be used in an offline, but also online setting. The latter is known as operational support. An example is the detection of non-conformance at the moment the deviation actually takes place. Another example is time prediction for running cases, i.e., given a partially executed case the remaining processing time is estimated based on historic information of similar cases. Process mining provides not only a bridge between data mining and business process management; it also helps to address the classical divide between “business” and “IT”. Evidence-based business process management based on process mining helps to create a common ground for business process improvement and information systems development. The course uses many examples using real-life event logs to illustrate the concepts and algorithms. After taking this course, one is able to run process mining projects and have a good understanding of the Business Process Intelligence field.
The TU/e is offering students the concept of Challenge Based Learning. This means that, during your education, you will work on several challenges that occur in the world around us. A few examples:
Sustainable energy
Future cities
Portable ‘health’ sensors
Self-driving cars
Data models to predict group behavior
You will search for solutions for challenges within these themes, together with your fellow students and a professor. Sometimes together with students from your own major, sometimes with students from different majors. You’ll gain plenty of knowledge during lectures and webinars, but you are also encouraged to actively look for new knowledge.
The questions that you are working with are directly derived from the corporate life, society or science. The experts who are actually working on these challenges, are actively involved in our education. This helps you, even before the start of your career, to build bridges between technology and the world around you. This is a strong quality that is highly valued on the job market and in our society.